
ECE 580 – Network Theory  Network Classification 
Sec. 1.4 Balabanian-Bickart 

Sec. 1.1 Temes-Lapatra 

	
  

1	
  

Definitions 

• Network – Any structure containing interconnected elements. 
• Circuit – Usually physical structure constructed from electrical components. 

 
(A) Linear Network: response proportional to excitation. Superposition applies: 
 

€ 

If e1(t)→w1(t) and e2(t)→w2(t)  
 

Then 
 

€ 

k1⋅ e1(t) + k2 ⋅ e2(t)→k1⋅ w1(t) + k2 ⋅ w2(t) 
 
(B) Time-Invariant Network: 

€ 

e(t)→w(t)relation the same if

€ 

t → t + t1. Time 
varying otherwise. 
 

(C) Passive Network: EM energy delivered always non-negative. Specifically: 
 

€ 

E(t) = v(x)i(x)dx ≥ 0
−∞

t

∫
 

 
or 
 

€ 

E(t) = v(x)i(x)dx + E(t0) ≥ 0
t0

t

∫  

 
This must be true for any voltage and its resulting current for all t 

 
Otherwise, active. 
 

(D) Lossless Circuit: input energy is always equal to the energy stored in the network. 
Otherwise, lossy. 
 

(E) Distributed Network: must use Maxwell’s equation to analyze. Examples: 
transmission lines, high speed VLSI circuits.  
 

(F) Memoryless or Resistivity Circuit: no energy storing elements. Response 
depends only on instantaneous excitation. Otherwise, dynamic or memoried 
circuit.  
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(G) Reciprocity: response remains the same if excitation and response locations are 
interchanged. Specifically:  
 

 
Otherwise, non-reciprocal. 
 
 
 
 
 
 
 
 
 
 

-­‐h21	
  =	
  h12	
  

y21=	
  y12	
  

z21=	
  z12	
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(H) Lumped Network: physical dimensions can be considered zero. In reality, much 
smaller than the wavelength of the signal. 

 

 
 

(I) Continuous-Time Circuit: the signals can take on any value at any time. 
 

(J) Sampled-Data Circuit: the signals have a known value only at some discrete 
time instances. Digital, analog circuits.  
 

An ideal RLC circuit is linear, time-invariant, passive, lossy, reciprocal, lumped, 
dynamic continuous-time network. 

 
 

 

 

 

 

 



ECE 580 – Network Theory  Network Components 
Sec. 1.5 Balabanian-Bickart 

	
  

4	
  

(A) Ideal R, L, C: 
 

 

Table 1 

Each passive.  
 
Assuming standard references, the energy delivered to each of the elements starting at a 
time when the current and voltage were zero will be:  
 
 

€ 

ER (t) = Ri2(x)dx ≥ 0
−∞

t

∫  (67) 

 

€ 

EL (t) = L di(x)
dx

i(x)dx =
−∞

t

∫ Li'di' =
1
2
Li2(t)

0

i( t )

∫ ≥ 0  (68) 

 

€ 

EC (t) = C dv(x)
dx

v(x)dx =
−∞

t

∫ Cv 'dv ' =
1
2
Cv 2(t)

0

v(t )

∫ ≥ 0  (69) 
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(B) Ideal Transformer:  

 
Fig. 6 An ideal transformer 

 
Defined in terms of the following v-i relationships: 
 

Memoryless 

€ 

v1 = nv2
i2 = −ni1

 (70a) 
(70b) 

 
or 
 

 

€ 

v1
i2

⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

0 n
−n 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
i1
v2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (70c) 

 

 

€ 

v1 = nv2 = −nRi2 = (n2R)i1 (71) 
 

 
At the input terminals, then, the equivalent resistance is

€ 

n2R. Observe that the 
total energy delivered to the ideal transformer from connections made at its 
terminals will be 
 

 

€ 

E(t) = (v1(x)i1(x) + v2(x)i2(x))dx = 0
−∞

t

∫
 

P = 0
 (72) 

 
Lossless, memoryless! 
 
The right-hand side results when the v-i relations of the ideal transformer are 
inserted in the middle. Thus, the device is passive; it transmits, but neither stores 
nor dissipates energy. 
 
Memoryless! 
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L1: primary self-inductance 

M: mutual inductance 

(C) Physical Transformer: 

 
Fig. 7 A transformer 

 
The diagram is almost the same except that the diagram of the ideal transformer 
shows the turns ratio directly on it. The transformer is characterized by the 
following v-i relationships for the reference shown in Fig. 7: 
 

 

€ 

v1 = L1
di1
dt

+ M di2
dt

 (73a) 

 
And 
 

 

€ 

v2 = M di1
dt

+ L2
di2
dt

 (73b) 

 
Thus it is characterized by three parameters: the two self-inductances L1 and L2, 
and the mutual inductance M. The total energy delivered to the transformer from 
external sources is  
 

 

€ 

E(t) = [v1(x)i1(x) + v2(x)i2(x)]
−∞

t

∫ dx

= L1i1
'di1

' + Md(i1
'i2
' ) + L2i2

'di2
'

0

i2

∫
0

i1 ,i2

∫
0

i1

∫

=
1
2
(L1i1

2 + 2Mi1i2 + L2i2
2) ≥ 0

 (74) 

 
It is easy to show that the last line will be non-negative if 
 

 

€ 

M 2

L1L2
= k 2 ≤1 (75) 

 
Since physical considerations require the transformer to be passive, this condition 
must apply. The quantity k is called the coefficient of coupling. Its maximum 
value is unity for a closely-coupled transformer. 
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Losssless, memoried element. 
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(D) The Gyrator: 
 

Definitions: 
• Port: Two terminals, both input leads always carrying the same current. 
• Gyrator: A two port network requiring active components for realization. 

 

 
Fig. 9 A gyrator 

 
Often used to transform (convert) impedance into a different kind. Generally,  

 

€ 

Zin =
r2

Zload

, in s − domain  
 

 

For Fig. 9(a)   or  

€ 

V1
V2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

0 −r
r 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
i1
i2

⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥  (79a) 

 

For Fig. 9(b) 

€ 

V1 = ri2
V2 = −ri1

  or  

€ 

V1
V2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

0 r
−r 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
i1
i2

⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥  (79b) 

 
 

€ 

E(t) = (v1i1 + v2i2)dx = [(−ri2)i1 + (ri1)i2]dx = 0
−∞

t

∫
−∞

t

∫  (80) 

	
  

	
  
Fig. 11 Gyrator terminated in a capacitor C 

€ 

i2 = −C dv2
dt

. Therefore, upon inserting the v-i relations associated with the 

gyrator, we observe that 

 

€ 

v1 = −ri2 = −r −C dv2
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = rC

d(ri1)
dt

= r2C di1
dt

= L di1
dt

 (82) 

 

Lossless,	
  but	
  	
  

Nonreciprocal	
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 (The first one is more practical, using transconductors) 

 

 
Figure 7-18 Ideal gyrator circuit 

 

 
Figure 7-24 Floating-inductor simulation using gyrator 
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The Riordan circuit using two op-amps: 

Riordan GIC/GII: general impedance converter or inverter 

 
Figure 7-19 The Riordan circuit: (a) basic circuit; 

 (b) used as an inductor; (c) used as a gyrator 
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Graph Theory, Topological Analysis 

• Topological Analysis: General, systematic, suited for CAD. 
 

• Graph: Nodes and directed branches, describes the topology of the circuit, ref. 
direction. 
 

• Tree: Connected subgraph containing all nodes but no loops.  
 

• Branches in tree: twigs. 
 

• Branches not in tree: links 
 

• Links: Cotree 

 
Fig. 2.2 (a) Linear circuit (b) corresponding linear directed graph 

 
 

 
Fig. 2.3 Two of the 32 trees in the graph of Fig. 2.2b 
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Incidence Matrix A: Describes connectivity between nodes and branches.  

Rule:  

€ 

aij =

+1, if branch j is directed away from node i
−1, if branch j is directed toward node i
0, if branch j is not incident with node i

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

 

As an example, the node-to-branch incidence matrix for the graph of Fig. 2.2b is 

€ 

(1) (2) (3) (4) (5) (6) (7) (8)

AA =

−1 1 1 −1 0 0 0 −1
0 0 0 1 1 1 0 0
0 0 0 0 0 −1 1 1
1 −1 −1 0 −1 0 −1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

(1)
(2)
(3)
(0)

 

Augmented incidence matrix: contains reference node (0). 

Row: Nodes; Column Branches 

One row may be omitted, since sum of entries in each column is zero. 
(Reference node omitted.) 

Resulting matrix: A. # of non reference nodes N ≤ # of branches B → rank  
of A ≤ N. 

Partitioned incidence matrix: Choose a tree, put its twigs in the first N columns of 
A. Then 

A = [At | Ac] tree | cotree 

It can be shown that det{At} = ±1; and that det{AAt} = # of trees. 

This proves that rank A = N! Largest singular submatrix N x N. 

Mx = y,  x = M-1y 
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Graph Definitions 
 
These trees can be found by systematically listing possible combinations of the three 
branches. These are listed below. 
 

 
 

Each entry in the list must now be scrutinized to see if it contains all nodes and no loops. 
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Branch-to-Node Voltage Transformation: (KVL) 
 
 Branch Voltage: 

€ 

V t = [v1v2 ...vb ] 
  
 Node Voltage: 

€ 

E t = [e1e2 ...en ] 
 

By KVL, if branch k goes from node I to node j, so aik = 1 and ajk = -1, then 

€ 

Vk = ei − e j = a jkei + a jke j = [k th column of A]t ⋅ E = aikei + ...+ aNkeN  
 

In general, V = AtE. 
 

 
Fig. 2.4 Schematic for definition of branch and node voltages 

 
Branch voltages expressed in terms of node voltages → there are fewer! 
Purpose: formulate smallest set of linear equations before solving them. 
 

 
The KCL in Topological Formulation 
 

The KCL says that the sum of currents leaving any node is zero. Since aij = 1(-1) 
means branch j leaves (enters) node i, the KCL for node i means 
 

€ 

aij ⋅ i j
j
∑ = 0 or [ith row of A]I=0, i=1, … , N. Hence, AI = 0. 

 
Choose a tree, and partition A and I so that A = {At | Ac} and It = {It | Ic}. Then 
AtIt + AcIc = 0 and It = -(At)-1AcIc. This gives the twig currents from A and the 
link current. Note that At cannot be singular.  
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Example: 

 

 
 

Twig currents can be found from link current. Fewer twigs than links.  
 
These equations corroborate completely the branch current relationships exemplified in 
the circuit of Fig. 2.2a. (p.12) 
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Generalized Branch Relations 
 
General branch for lumped linear network contains a (single) element bk which may be an 
R, L, C, and dependent sources, as well as a voltage and a current source which may 
include the representation of initial energy stored in bk: 
 

 
Fig. 3.1 Generalized schematic representation of k th branch in linear circuit 

 
 
Since 

€ 

ik
' = ik − Jk  and 

€ 

vk
' = vk −VkE , for the branch vectors 

€ 

I ' = I − J  and 

€ 

V ' =V =VE  
hold.  
 
Nodal Analysis 
 
Combining the branch relatons with the KVL (V’ = AtE) and KCL (AI’ = 0) the matrix 
relations 
 

(1) V = VE + AtE

€ 

  
(2) AI = AJ   

 
Result 2 equations, 3 unknown vectors: V, I, E. 
 
Let the V-I relations of the bk elements be described by the matrix relation I = YV, where 
the diagonal element yii of Y represents the internal admittance of bi in branch I, and the 

off-diagonal one 

€ 

ykl =
ik
vl

 represents a dependent I source in the branch k controlled by 

branch V2. Combining (1), (2) and I = YV, and eliminating V and I, in the Laplace 
domain, the nodal equations 

€ 

Y N (s)E(s) = JN (s) result, where 

€ 

Y N (s) = AY (s)At  is the N x 
N nodal admittance matrix, and 

€ 

JN (s) = A[J(s) −Y (s)VE (s)] the equivalent nodal current 
excitation vector. (Due to independent sources Jk and Vke.) 
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Node analysis parameters 
 

Branch element voltage, currents 

€ 

vk, ik → V , I  

Branch voltages, currents 

€ 

vk ', ik ' → V ', I'  

Source voltages, currents 

€ 

VKE , JK → VE , J  

Branch admittances, branch admittance matrix 

€ 

yij → Y  

Nodal admittances, nodal admittance matrix 

€ 

yijN → YN  

Nodal current excitations, n. c. e. vector 

€ 

JiN → JN  

Node voltages 

€ 

ei → E  
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Example: 
 

 
Fig. 3.2 (a) Circuit used to exemplify 

€ 

Z  and 

€ 

Y  matrices (b) Graph of circuit 
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