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Definitions

* Network — Any structure containing interconnected elements.
* Circuit — Usually physical structure constructed from electrical components.

(A) Linear Network: response proportional to excitation. Superposition applies:

If e (t) —=w,(t) and e,(t) =>w,(1)

Then

ke (t)+k, e,(t) =k w/(t)+k, wy(t)

(B) Time-Invariant Network: e(z) —w(¢)relation the same iff =1 +1,. Time
varying otherwise.

(C)  Passive Network: EM energy delivered always non-negative. Specifically:

A 3,4,;,.1_,‘;_%

t ., - |
E(1) = [v(x)i(x)dx =0 - dirgelions
T § |

5 |

e ]

or ” | ?:_ A L i|

| .

E(t) = [v(0)i(x)dx + E(1,) 20 [

This must be true for any voltage and its resulting current for all t Tu %WQ/E
Otherwise, active. e J Vé tyAdx 20

&

(D)  Lossless Circuit: input energy is always equal to the energy stored in the network.
Otherwise, lossy.

(E)  Distributed Network: must use Maxwell’s equation to analyze. Examples:
transmission lines, high speed VLSI circuits.

(F) Memoryless or Resistivity Circuit: no energy storing elements. Response
depends only on instantaneous excitation. Otherwise, dynamic or memoried
circuit.
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(G)  Reciprocity: response remains the same if excitation and response locations are
interchanged. Specifically:

221= 212

o) ¢

> g

Vo

Otherwise, non-reciprocal.
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(H) Lumped Network: physical dimensions can be considered zero. In reality, much
smaller than the wavelength of the signal.

b, =L,

(a)

v, v,
o——__: o

v

U

v, /

> X
()
@D Continuous-Time Circuit: the signals can take on any value at any time.
J) Sampled-Data Circuit: the signals have a known value only at some discrete

time instances. Digital, analog circuits.

3

An ideal RLC circuit is linear, time-invariant, passive, lossy, reciprocal, lumped,
dynamic continuous-time network.
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(A) IdealR,L,C:

4

Voltage-Current Relationship

Element Parameter Direct Inverse Symbol
i

. Resistance R . X 1 ¢ N

Resistor Conductance G v = Ri i= fo = Gv $ v

t

Inductance L S di RN O . ‘
Inductor Inverse Inductance T v=1L e i(t) = f'[\ (x)dx +i(0)
. Capacitance C . dv , _ 1 [ : , ¢ -L *
Capacitor Elastance D i= o v(t) = E{l(x)dr +v(0) c _I_ v
Table 1

Each passive.

Assuming standard references, the energy delivered to each of the elements starting at a

time when the current and voltage were zero will be:

E () = [ Ri*(x)dx 20

i(t)
E, (1) = fL l( )dx —ledl —lLl (1) =0

v(t)
1
v(x)dx -Jevay =2 cvi=0

0

E.(1) = fc

(67)

(68)

(69)
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(B)  Ideal Transformer:

—> iy n:1 i, «— — iy n:1 i, +—
0 O
+ + + +
o [ [ ] [
Vi E 7 Vi V, $ R
. Ideal ©° ° Ideal
(a) (b)

Fig. 6 An ideal transformer

Defined in terms of the following v-i relationships:

Memoryless Vv =nv, (70a)
i, = —ni, (70b)
or
2 0 nflg 70
_ i |-n 0 Vv, (70c)
.rl f 1 l?‘
+ O + . .
v, . R :JZ v, =nv, = -nRi, = (n"R)j, (71)
- 66—

At the input terminals, then, the equivalent resistance is n°R. Observe that the
total energy delivered to the ideal transformer from connections made at its
terminals will be

E@) = [(0,(x0)i(x) +v,(x)i, (x))dx =0

P=0

(72)

Lossless, memoryless!
The right-hand side results when the v-i relations of the ideal transformer are
inserted in the middle. Thus, the device is passive; it transmits, but neither stores

nor dissipates energy.

Memoryless!
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Physical Transformer:
. . c—» iy M iy <—°
L: primary self-inductance  + ° ° +
. v1 L1 L2 v2
M: mutual inductance ) )
o °]

Fig. 7 A transformer

The diagram is almost the same except that the diagram of the ideal transformer
shows the turns ratio directly on it. The transformer is characterized by the
following v-i relationships for the reference shown in Fig. 7:

2 =L1%+M% (73a)
dt dt
And
di, di,
=M—+L,—~ 73b
vV, dt 21 (73b)

Thus it is characterized by three parameters: the two self-inductances L, and L,
and the mutual inductance M. The total energy delivered to the transformer from
external sources is

E(0) = [1v,(x)i(x) +v,(x)i, (x)Jdx

i 5y

= [ Lidi| + [ MdGi))+ [ Ly, di, (74)
0 0 0
1
= E(Llil2 +2Mii, + L,i,’) 20
It is easy to show that the last line will be non-negative if

M2

=k’<1 75
LL, < (75)

Since physical considerations require the transformer to be passive, this condition
must apply. The quantity k is called the coefficient of coupling. Its maximum
value is unity for a closely-coupled transformer.
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A transformer for which the coupling coefficient takes on its maximum
value k =1 is called a perfect, or perfectly coupled, transformer. A perfect
transformer is not the same thing as an ideal transformer. To find the
difference, turn to the transformer equations (73) and insert the perfect-

transformer condition M =\/L1L2 ; then take the ratio v;/vs. The result
will be

di __di
, nis /I
1
vy di dis Ll/Lz (76)

Vo 3]
\/ 1L — ‘i‘LZE‘

This expression is identical with v; = nve for the ideal transformerf if

n— Ll/Lz . (77)
v

Next let us consider the current ratio. Since (73) involve the derivatives
of the currents, it will be necessary to integrate. The result of inserting

the perfect-transformer condition M = \/ L;L, and the value n—=
V' Li/Ls, and integrating (73a) from 0 to ¢ will yield, after rearranging,

i) = — )+ - [ ') v [ 120 + Lo} @

This is to be compared with i; = —is/n for the ideal transformer. The
form of the expression in brackets suggests the v-i equation for an induc-
tor. The diagram shown in Fig. 8 satisfies both (78) and (76). It shows
how a perfect transformer is related to an ideal transformer. If, in a
perfect transformer, L; and Ly are permitted to approach infinity, but in
such a way that their ratio remains constant, the result will be an ideal
transformer.

! I
I
— | |
o—+ i o
| iz ° ¢
| |
o |
|
} 1
o i | %)
H Ideal |
| |
| PO, e e o AT S |

Perfect transformer

Fig. 8. Relationship between a perfect and an ideal transformer.

Losssless, memoried element.
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(D)  The Gyrator:

Definitions:

— iy r i, «—
v, ) C v,
[ S— L— o

(a)

Network Components
Sec. 1.5 Balabanian-Bickart

Port: Two terminals, both input leads always carrying the same current.
Gyrator: A two port network requiring active components for realization.

—>i1 r i2<—
- bq -

(b)

Fig. 9 A gyrator

Often used to transform (convert) impedance into a different kind. Generally,

2

For Fig. 9(a)

For Fig. 9(b)

E(r) = f(v1i1 +V,i,)dx = f[(_ri2)i1 +(riy)iyJdx =0

_’i"
O

+

Vi

, in §s—domain

) (

o—

|

|

-r 0

I +—

- T

(79a)

(79b)

(80)

Lossless, but

Nonreciprocal

Fig. 11 Gyrator terminated in a capacitor C

. dv S . . : :
i,=-C d_t2 Therefore, upon inserting the v-i relations associated with the

gyrator, we observe that

v,

= —ri, =—1| =C
v, = -Tri, r( o

|

rC
dt

d(ri))

2

diy
dr

Ldi
dt

(82)
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(The first one is more practical, using transconductors)

R R
s T eede e Y — o
DiE g

o— L ¢ — 00— — o
(@)

o - BUT00 —0

Leg=R2C

O O

(b)

Figure 7-24 Floating-inductor simulation using gyrator
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The Riordan circuit using two op-amps:

Riordan GIC/GII: general impedance converter or inverter

[ eV Z, oV 2oV 2 Ve i Za Ve 7

o——4
+

e o] 0
v + - + -

| | L
P
Z =
(a)
R, €;

o—

= ‘
z —> + - % Ry

[

||||[

(b)

+ V=

Vi

I

—

(c)

Figure 7-19 The Riordan circuit: (a) basic circuit;

(b) used as an inductor; (c) used as a gyrator
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A circuit which uses two grounded-output op-amps and is useful for the
realization of either GICs or GlIs is shown in Fig. 7-19a.t The input impedance Z
can easily be found, as follows. When we recall that the input voltage of an
op-amp is very nearly zero,

V=¥, (7-62)

is obtained. Also, if we denote the current through Z, by I, (with the reference
direction pointing left to right), the current through Z, by I,, etc., clearly

I =1 V-W=01LZ=xV,-V,=-1,Z,
Iyxl, V,— VoS-V, — 1,7, (7-63)
Ll VaV,=1sZs

Here we assumed, as usual, that the current in the input leads of the op-amps
is zero.

Working backward in (7-63) leads to

Z3 Z3 Zl Z3 ZIZ3ZS
~ ~ =125~ —1,—Z;x],——Zsx]———
VaIZix LZsx ~h 2 x ~h Zn L5 S 2 17
(7-64)
Vo i
Z=—~—-—"" 7-65
Hence - Z,2, (7-65)

If Z, is regarded as a load impedance, the circuit behaves like a GIC; (7-46)
takes the form

2()=1()Zsls)  1(5) = %ﬁﬁ; (7-66)

If for example, Z, =R,, Z,=1/sC,, Zy=R;, Z,=R,, and Z5 = R;
(Fig. 7-19b), then f(s) = Ry R5/[(1/sC,)R,] and

R R; R SR1C2R3R5

(EeRT v = o ol

Hence, the input impedance is that of an inductor, with an equivalent inductance
value L, = Ry C; R;Rs /R, .

As (7-67) suggests, and as can be directly verified from (7-65), the two-port
formed by regarding the terminals of Z, as an output port is a gyrator if all other
impedances are purely resistive (Fig. 7-19¢). More generally, if the terminals of Z
(or Z, or Z,) constitute the output port, the circuit of Fig. 7-19a is a GIC; if the
terminals of Z, (or Z,) form the output port, the resulting two-port is a GII.

Assume now that we choose Z, and Z, as capacitive and Z,, Z,, and Z5 as
resistive impedances. Then (7-65) gives, for s = jw,

: RoBRs oo
Z(Jw)_(l/ijz)(l/ij4)_ 0ZRiCRyC R, (7-68)

We note that Z(jw) is pure real, negative, and a function of w. Such an
impedancet is called a frequency-dependent negative resistance (FDNR). A slightly
different form of FDNR can be obtained, e.g., by choosing Z, and Z; as capaci-
tors and Z,, Z,, and Z; as resistors. Then

Zjops e (7-69)

As we shall see later, FDNRs are very useful for the design of active filters.
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Graph Theory, Topological Analysis

* Topological Analysis: General, systematic, suited for CAD.

* Graph: Nodes and directed branches, describes the topology of the circuit, ref.
direction.

* Tree: Connected subgraph containing all nodes but no loops.
* Branches in tree: twigs.
* Branches not in tree: links

e Links: Cotree

N
w
o
~N

Fig. 2.3 Two of the 32 trees in the graph of Fig. 2.2b
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Incidence Matrix A: Describes connectivity between nodes and branches.

Rule:

+1, if branch j is directed away from node i
a; =|-1, if branch j is directed toward node i

0, if branch j is not incident with node i

As an example, the node-to-branch incidence matrix for the graph of Fig. 2.2b is

M2 G @ 6 © T ©®

11 1 -1 0 0 o0 -110
. 0 0 0 1 1 1 0 0/©®
A7lo 00 0 0 -1 1 1103

I -1 -1 0 -1 0 -1 0|0
Augmented incidence matrix: contains reference node (0).

Row: Nodes:; Column Branches

One row may be omitted, since sum of entries in each column is zero.
(Reference node omitted.)

Resulting matrix: A. # of non reference nodes N < # of branches B — rank
of A = N.

Partitioned incidence matrix: Choose a tree, put its twigs in the first N columns of
A. Then

A =[Ai|Ac] tree]| cotree
It can be shown that det{A} = +1; and that det{AA} = # of trees.
This proves that rank A = N! Largest singular submatrix N x N.

ExAMPLE 2. In the graph of Fig. 2.2b, select the tree defined by branches
{2,6,8}. Then, using (2.3), 4 is written

@O @ 1) B @ ) @)

]

|

|

-1 -1 -1 0 0] @)
050 1 1 0|
i 0

110)
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Graph Definitions

These trees can be found by systematically listing possible combinations of the three
branches. These are listed below.

123 234 345 456 567 678
124 235 346 457 568
125 236 347 458

126 237 348

1127 238

128

134 145 156 167 178
135 146 157 168

136 147 158

137 148

138

245 256 267 278 356
246 257 268 357
247 258 358
248

367 378 467 478 578
368 468

Each entry in the list must now be scrutinized to see if it contains all nodes and no loops.

TABLE 2.1

Trees and Cotrees for Graph of Fig. 2.2b

Trees Cotrees
345 246 12578 13578
347 246 12568 13568
348 248 12567 13567
456 256 12378 13478
457 257 12368 13468
458 258 12367 13467
568 267 12347 13458
678 268 12345 13457
146 356 23578 12478
147 357 23568 12468
148 358 23567 12467
156 367 23478 12458
157 368 23468 12457
158 467 23467 12358
167 478 23458 12356

168 578 : 23457 12346
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Branch-to-Node Voltage Transformation: (KVL)

Branch Voltage: V' =[vv,..v,]
Node Voltage: E' =[ege, .., ]

By KVL, if branch k goes from node I to node j, so ay = 1 and aj = -1, then
Vi=e,—e;=a,e,+aye, =[k" column of Al E =aye, +..+aye,

In general, V= A'E.

Uk
F =
® @
branch element >
+ +

Fig. 2.4 Schematic for definition of branch and node voltages

Branch voltages expressed in terms of node voltages — there are fewer!
Purpose: formulate smallest set of linear equations before solving them.

The KCL in Topological Formulation

The KCL says that the sum of currents leaving any node is zero. Since a;; = 1(-1)
means branch j leaves (enters) node i, the KCL for node i means

Eai]n i;=0or [ith row of A]I=0, i=1, ..., N. Hence, Al = 0.
j

Choose a tree, and partition A and I so that A = {A,| A.} and I'= {I;| Lc}. Then
Adli+Ad.=0and L= -(At)'léclc. This gives the twig currents from A and the
link current. Note that A, cannot be singular.
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Example:
ExamprLe 4. With reference to Example 2,

1 0 -1
A, =10 1 0
0 -1 1
whence
1 3 13
A7'=10 1 0
0 1 1
Then,
. 1 111 3. 0.0
A4 =y 1 aee 0 -t o0
g1 a0 020 01
e e
=0 s 0000 B
ol e BT |
With

(2.16) produces
12=11_i3_i5_l7
i4 T is

iy —is— i
Twig currents can be found from link current. Fewer twigs than links.

These equations corroborate completely the branch current relationships exemplified in
the circuit of Fig. 2.2a. (p.12)
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Generalized Branch Relations

General branch for lumped linear network contains a (single) element by which may be an
R, L, C, and dependent sources, as well as a voltage and a current source which may
include the representation of initial energy stored in by:

C"‘ Jo Vi

Fig. 3.1 Generalized schematic representation of & th branch in linear circuit

Since i, =i, —=J, and v, =v, =V, for the branch vectors I =/ -Jand V =V =V,
hold.

Nodal Analysis

Combining the branch relatons with the KVL (V_= A'E) and KCL (AL = 0) the matrix
relations

(1) V=Vg+AE
@) Al=AJ

Result 2 equations, 3 unknown vectors: V, I, E.

Let the V-I relations of the by elements be described by the matrix relation I = YV, where
the diagonal element y; of Y represents the internal admittance of b; in branch I, and the

off-diagonal one y, = L represents a dependent I source in the branch k controlled by
Vi

branch V,. Combining (1), (2) and I = YV, and eliminating V and I, in the Laplace
domain, the nodal equations Y, (s)E(s) = J , (s) result, where Y, (s) = AY(s)A" is the N x
N nodal admittance matrix, and J, (s) = A[J(s) - Y(s)V,(s)] the equivalent nodal current

excitation vector. (Due to independent sources Jx and Vie.)
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Node analysis parameters

Branch element voltage, currents Vi it = Vo I
Branch voltages, currents v, it = V., I
Source voltages, currents Vier Sk = Vis

Branch admittances, branch admittance matrix y; — Y
Nodal admittances, nodal admittance matrix Yin Y_N
Nodal current excitations, n. ¢. €. vector Iy = Jy

Node voltages e, > E
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Example:

£

) EmVs %

©

Fig. 3.2 (a) Circuit used to exemplify Z and ¥ matrices (b) Graph of circuit
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ExaMPLE 2. For the graph of Fig. 3.2,

D--Q) = ) =@ 0 ©) ) () ()

1 0 0 0 0 E ol 0 w0l )

4 1 1.0 “<0°= 0 0 00

B | 0 -1 -0 0 w0 =1 -0 1 1] 4
0 0. —-1"-1 "%~ 0 79 20 0} @&

0 0 0 0 1 0 0 -1 0 (5)

In the interest of mathematical simplicity, let all M, = 0. Then from (3.29),
13.34), (3.35), and (3.26),

1) () G): @ 6. () @ () O
@ |/ 0 0. 0 - gE g 0
@) f O B/ 0 S0 et 0 e 0
@ | 0 B4 T/t calht 20 0 S e D
@ | o 0 0 s, -0 -0 0 0 .0
Y(s)= (5 0 0 0 0 ©=sC; 070 <0 0
© | o 0 -0 etse 00 W
M | o 0 EER S e
® 0 0 00, 0. 006G 1
Dlinn a0l bt 0 Dl s ol
1t follows that
AY(s)
T,/s 0 0 0 0 sC, “G. 08
/s I,/s Ii/s 0 0 0 0 0 0
0 -T,/s 0 0 0 (gir—sC)= 0 Gy G
0 0 —-T,/s —-sC, 0 0 0 gt
0 0 0 @, 5 aC 0 0. " i bl
since g
b 1 0 0
el 0
e
080 9 =1 1.0
AT g o 0
ot o ety
B el
0 f 0
S gl g
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Yy(s) = AY(s)A” is as submitted below:

(Gq + sG + Ty /s) =T /s —sC
-Ty/s (T + I, + T3) /s ~T,/s
Yy(s)= (gm — sG) -L,/s (G + Gy — gy + 5G + T /s)
0 —T3/s 0
0 0 -Gy
0 0
— I /s 0
0 e
(sCy + T3/s) 0
0 (Gg + sCs)

The nodal current vector is obtained through use of (3.43). With

J7(s)=[01,(s)0000000]

and
Vi(s)=1[000-V¥.(s)00¥,(s)00]
- 5 -
0
0
—sCV.(s)
Y(s)Ve(s) = 0
0
G7I/g(s)
0
L 0 4
and, thus,
2 . &
I(s)
0
sCV.(s)
I(s) = Y(s)Vg(s) = 0
0
_G7Vg(s)
0
L 0 i
Finally,
GV, (s)
ekoah
Iy (s) —Ig(s)
—sCV.(s)
Fabads

It is understood that

JN(S) = YN(S)E(S)



